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Transient jet ejection events




GRS 1915+105
(MERLIN) Transients and persistents

In both BH and
NS systems,
transient X-ray
outbursts are
accompanied by
radio outbursts.

Cir X-1 (ATCA)

H—ray flare
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When resolved,
these reveal
highly relativistic
ejection events

— BH NS —
McCormick et al.(2003) Fender et al. (2003)




ENERGY TRANSFER
FROM THE CORE TO RADIO LOBES
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Fomalont et al. (2001a,b)
Highly relativistic jets in Sco X-1 acting on sub-
relativistic sites of particle re-acceleration... (bulk
Lorentz factor > 3; for Cir X-1 > 15)
.. and Sco X-1 is the prototype of a class of six
objects (the "Z" sources) which all have the same
radio properties...




Large-Scale, Decelerating Relativistic X-ray

Jets from the Microguasar XTE J1550-564
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RXTE/ASM lightcurve (1998-99) Hannikainen et al (2001)

* M, =10.5+/-1.0Mg;d~>5kpc (Orosz et al. 2002)

e 20 Sept. 1998: Strong and brief X-ray flare

Relativistic ejection imaged with VLBI (Hannikainen et al. 2001)



Large scale X-ray jets

Chandra 0. 3 - 8 keV images

e Discovery of X-ray sources
associated with radio lobes
e Moving and decelerating lobes

e Alignment + proper motion

Related to the brief flare of Sept. 1998

First detection of moving
relativistic X-ray jets

Evidence than radio through X-rays
1s synchrotron emission: interactions
with denser ISM

Particle in-situ acc. (>10TeV) powered by bulk deceleration




A fossil X-ray jets in
4U 1755-33

*XMM newton observations of
4U1755 1n 2000 (in quiescence
since 1995)

eLarge (7’°) scale two-sided X-
ray jets

*BHC active for > 25 years

[f v~c, 1t would have take 13 yr

to extend to its current length
S arcmin ———

*

Angellini & White(2003)




Radio (VLA)

XTE J1748-248

XTE J1748-248: a cosmic jet hits
the wall ? (Hjellming, unpublished)

+ GX 339-4 (Gallo et al. 03)
+ XTE J1650-500 (Corbel et al. 04)
+ 277? (Corbel et al. 2004)

TeV particle acceleration 1n jet : more
common than previously thought

Strong analogy with AGN jets

X-ray jets easily detected with Simbol-X:
what is the maximum energy of e- ?




PART II: the connection of
relativistic jets with X-ray state




An ubiquitous, powertul (?), compact jet
associated with the Low-Hard state

A compact jet on mas

scale in Cyg X-1

8.4 GHz image
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GRS 1915+105 (plateau state)
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Compact jet usually not resolved, but

inverted or flat radio spectra (Corbel et al.
2000, Corbel et al. 2001, Fender 2001)

Dhawan et al. (2000)

Optically thick synchrotron emission from a conical self-

absorbed outflow: Blandford & Konigl (1979) , Hjellming & Johnson (1988),
Falcke (1996)

Cut-off frequency at high frequency ??? And above ??7?
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Corbel & Fender (2002

Secondary peak
(corresponding to a LHS
transition) due to nonthermal
infrared emission associated
with the formation of the
compact jet (Jain et al. 01)
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Cut-off frequency
1n near-infrared

IR synchrotron emission
1n GX 339-4, but also
XTE J1550-564,...
(Corbel et al. 01, 02)
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Above this frequency: the X-ray b e i
spectra are consistent with an P :
extension of a powerlaw from ;
the IR: optically thin synchrotron
emission in X-rays?
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Corbel & Fender (2002)

Broadband SED of the rms
variability of XTE
J1118+480: consistent with
expectation of optically thin
synchrotron emission (Hynes

et al. 03)

14 15 16 17 18 19

Leg v (Hz) Hynes et al. 2003




Radio/X-ray flux correlation

ANV e mnll Very strong correlation
i T sl between radio and X-ray
emission over more than

3 decades 1n flux (down to
quiescence !!!)
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Soft X-ray (3—9 keV) flux {in 107 erg 57! cm ™)

Origin of emission of black hole candidate in quiescence ???

JDAF: Jet Dominated Accretion Flow (Fender, Gallo, Jonker 03)
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A universal radio/X-ray

low/hard/off state
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Same coupling !!!

Important for understanding of

jet model, TCAF (Choudhury 0

No strong Doppler

boosting: low velocity
jet (< 0.8 ¢)



Unifying Low-power accreting

black holes

Falcke, Kording, Markoff (2
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SED of BH operating at sub-Eddington accretion rate are dominated by non-thermal
emission from a relativistic jet (see also Merloni, Heinz, Di Matteo 2003)



Broadband spectra: role of
jets in the low/hard state?

Optically thick
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Corbel & Fender (2002), Markoff et al. (2003)

Jet model can account for all broadband spectra of GX 339-4, by
changing only two parameters: the input power and the location of
the first acceleration zone, Markoff et al. (2003)




SIMBOL-X and black hole
|n OUTbUr'ST

Various emission components:

o Accretion disk

 [ron line

e Corona: powerlaw + reflection

« Compact jets (+ reflection < 10 %)

Overlap in the 4 — 15 keV en. range

XTE J2012+338 SX: Soft and hard X-rays
Outburst (100 mCrab) - 10 ks

SX: precise spectral evltn (geometry,...) during outburst (and no pile up !

ToO reaction time very good : 4 times better than XMM !!! (even FF)




Relativistic Iron line: more constraint if simultaneous
fit (as in AGN, cf J. Wilms) of the reflection
component :

* Spin of the black hole
*X-ray emissivity profile

BZ mechanism : magnetic extraction of black hole spin energy

Starting point for launching powerful relativistic jets ?2??

+ QPOs studies: see talk by J. Rodriguez




Black hole in quiescence

quiescence 100 ks

Origin of X-ray emission at low
accretion rate: contribution of
jets ?

What fraction of accretion energy
is given back to ISM ?

Turlulence in ISM : trigger star
formation ?




CO nCIUS IOﬂS : Formation ot

shock acceleration of large scale lobes
particles up to TeV

: unstiyble acc disk with period of

radio flaring &nd quenched radio activity - Major

ejection event
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BHC T

spectra
and

powerful compact jet,
whose emission may
dominate the entire SEII
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: quenched
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